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Figure 1: The transverse resonance condition for a layered medium. The phase
of the wave at position 5 should be equal to the transverse phase at position 1.

1 Generalized Transverse Resonance Condition

The guidance conditions, the transverse resonance condition given previously,
can also be derived for the more general case. The generalized transverse reso-
nance condition is a powerful condition that can be used to derive the guidance
condition of a mode in a layered medium.

To derive this condition, we first have to realize that a guided mode in a
waveguide is due to the coherent or constructive interference of the waves. This
implies that if a plane wave starts at position 1 (see Figure 1)1 and is multiply
reflected as shown, it will regain its original phase in the x direction at position
5. Since this mode progresses in the z direction. Moreover, waves at 1 and 5
will gain the same phase in the z direction. But, for it to coherently interfere
in the x direction, the transverse phase at 5 must be the same as 1.

Assuming that the wave starts with amplitude 1 at position 1, it will gain
a transverse phase of e−jβ0xt when it reaches position 2. Upon reflection at
x = x2, at position 3, the wave becomes R̃+e

−jβ0xt where R̃+ is the generalized
reflection coefficient at the right interface of Region 0. Finally, at position 5,
it becomes R̃−R̃+e

−2jβ0xt where R̃− is the generalized reflection coefficient at
the left interface of Region 0. For constructive interference to occur or for the
mode to exist, we require that

R̃−R̃+e
−2jβ0xt = 1 (1.1)

The above is the generalized transverse resonance condition for the guidance
condition for a plane wave mode traveling in a layered medium.

In (1.1), a metallic wall has a reflection coefficient of 1 for a TM wave, hence

1The waveguide convention is to assume the direction of propagation to be z. Since we are
analyzing a guided mode in a layered medium, z axis is as shown in this figure.
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if R̃+ is 1, Equation (1.1) becomes

1− R̃−e
2−jβ0xt = 0. (1.2)

On the other hand, in (1.1), a metallic wall has a reflection coefficient of −1,
for TE wave, and Equation (1.1) becomes

1 + R̃−e
2−jβ0xt = 0. (1.3)

2 Dielectric Waveguide

The most important dielectric waveguide of the modern world is the optical
fiber, whose invention was credited to Charles Kao. He was awarded the Nobel
prize in 2009. However, the analysis of the optical fiber requires analysis in
cylindrical coordinates and the use of special functions such as Bessel functions.
In order to capture the essence of dielectric waveguides, one can study the slab
dielectric waveguide, which shares many salient features with the optical fiber.
This waveguide is also used as thin-film optical waveguides (see Figure 2). We
start with analyzing the TE modes in this waveguide.

Figure 2:
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2.1 TE Case

Figure 3:

We shall look at the application of the transverse resonance condition to a
TE wave guided in a dielectric waveguide. Again, we assume the direction
of propagation of the guided mode to be in the z direciton in accordance to
convention. Specializing the above equation to the dielectric waveguide shown
in Figure 3, we have the guidance condition as

1 = R10R12e
−2jβ1xd (2.1)

where d is the thickness of the dielectric slab. Guidance of a mode is due to
total internal reflection, and hence, we expect Region 1 to be optically more
dense (in terms of optical refractive indices) than region 0 and 2.

To simplify the analysis further, we assume Region 2 to be the same as
Region 0. The new guidance condition is then

1 = R2
10e

−2jβ1xd (2.2)

Also, we assume that ε1 > ε0 so that total internal reflection occurs at both
interfaces as the wave bounces around so that β0x = −jα0x. Therefore, for TE
polarization, the single-interface reflection coefficient is

R10 =
µ0β1x − µ1β0x
µ0β1x + µ1β0x

=
µ0β1x + jµ1α0x

µ0β1x − jµ1α0x
= ejθTE (2.3)

where θTE is the Goos-Hanschen shift for total internal reflection. It is given by

θTE = 2 tan−1

(
µ1α0x

µ0β1x

)
(2.4)

The guidance condition for constructive interference according to (2.1) is such
that

2θTE − 2β1xd = 2nπ (2.5)
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From the above, dividing it by four, and taking its tangent, we get

tan

(
θTE

2

)
= tan

(
nπ

2
+
β1xd

2

)
(2.6)

or

µ1α0x

µ0β1x
= tan

(
nπ

2
+
β1xd

2

)
(2.7)

The above gives rise to

µ1α0x = µ0β1x tan

(
β1xd

2

)
, n even (2.8)

−µ1α0x = µ0β1x cot

(
β1xd

2

)
, n odd (2.9)

It can be shown that when n is even, the mode profile is even, whereas when n
is odd, the mode profile is odd. The above can also be rewritten as

µ0

µ1

β1xd

2
tan

(
β1xd

2

)
=
α0xd

2
, even modes (2.10)

−µ0

µ1

β1xd

2
cot

(
β1xd

2

)
=
α0xd

2
, odd modes (2.11)

Using the fact that −α2
0x = β2

0 − β2
z , and that β2

1x = β2
1 − β2

z , eliminating βz
from these two equations, one can show that

α0x = [ω2(µ1ε1 − µ0ε0)− β2
1x]

1
2 (2.12)

and (2.10) and (2.11) become

µ0

µ1

β1xd

2
tan

(
β1xd

2

)
=
α0xd

2
=

√
ω2(µ1ε1 − µ0ε0)

d2

4
−
(
β1xd

2

)2

, even modes

(2.13)

−µ0

µ1

β1xd

2
cot

(
β1xd

2

)
=
α0xd

2
=

√
ω2(µ1ε1 − µ0ε0)

d2

4
−
(
β1xd

2

)2

, odd modes

(2.14)

We can solve the above graphically by plotting

y1 =
µ0

µ1

β1xd

2
tan

(
β1xd

2

)
even modes (2.15)

y2 = −µ0

µ1

β1xd

2
cot

(
β1x

d

2

)
odd modes (2.16)

y3 =

[
ω2(µ1ε1 − µ0ε0)

d2

4
−
(
β1xd

2

)2
] 1

2

=
α0xd

2
(2.17)
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Figure 4:

In the above, y3 is the equation of a circle; the radius of the circle is given
by

ω(µ1ε1 − µ0ε0)
1
2
d

2
. (2.18)

The solutions to (2.13) and (2.14) are given by the intersections of y3 with y1
and y2. We note from (2.1) that the radius of the circle can be increased in
three ways: (i) by increasing the frequency, (ii) by increasing the contrast µ1ε1

µ0ε0
,

and (iii) by increasing the thickness d of the slab.2 The mode profiles of the
first two modes are shown in Figure 5.

2These features are also shared by the optical fiber.
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Figure 5: Courtesy of J.A. Kong.

When β0x = −jα0x, the reflection coefficient for total internal reflection is

RTE10 =
µ0β1x + jµ1α0x

µ0β1x − jµ1α0x
= exp

[
+2j tan−1

(
µ1α0x

µ0β1x

)]
(2.19)

and
∣∣RTE10

∣∣ = 1. Hence, the wave is guided by total internal reflections.
Cut-off occurs when the total internal reflection ceases to occur, i.e. when

the frequency decreases such that α0x = 0.
From Figure 4, we see that α0x = 0 when

ω(µ1ε1 − µ0ε0)
1
2
d

2
=
mπ

2
, m = 0, 1, 2, 3, . . . (2.20)

or

ωmc =
mπ

d(µ1ε1 − µ0ε0)
1
2

, m = 0, 1, 2, 3, . . . (2.21)

The mode that corresponds to the m-th cut-off frequency above is labeled the
TEm mode. Thus TE0 mode is the mode that has no cut-off or propagates at all
frequencies. This is shown in Figure 6 where the TE mode profiles are similar
since they are dual to each other. The boundary conditions at the dielectric
interface is that the field and its normal derivative have to be continuous. The
TE0 or TM0 mode can satisfy this boundary condition at all frequencies, but
not the TE1 or TM1 mode. At the cut-off frequency, the field outside the slab
has to become flat implying the α0x = 0 implying no guidance.
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Figure 6: The TE modes are dual to the TM modes and have similar mode
profiles.

At cut-off, α0x = 0, and from the dispersion relation that α2
0x = β2

z − β2
0 ,

βz = ω
√
µ0ε0,

for all the modes. Hence, both the group and the phase velocities are that of
the outer region. This is because when α0x = 0, the wave is not evanescent
outside, and most of the energy of the mode is carried by the exterior field.

When ω →∞, the radius of the circle in the plot of y3 becomes increasingly
larger. As seen from Figure 4, the solution for β1x → nπ

d for all the modes.
From the dispersion relation for Region 1,

βz =
√
ω2µ1ε1 − β2

1x ≈ ω
√
µ1ε1, ω →∞ (2.22)

Hence the group and phase velocities approach that of the dielectric slab. This
is because when ω → ∞, α0x → ∞, implying that the fields are trapped or
confined in the slab and propagating within it. Because of this, the dispersion
diagram of the different modes appear as shown in Figure 7. In this figure,
kc1, kc2, and kc3 are the cut-off wave number or frequency of the first three
modes. Close to cut-off, the field is traveling mostly outside the waveguide, and
kz ≈ ω

√
µ0ε0, and both the phase and group velocities approach that of the

outer medium as shown in the figure. When the frequency increases, the mode
is tightly confined in the dielectric slab, and kz ≈ ω

√
µ1ε1. Both the phase and

group velocities approach that of Region 1 as shown.
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Figure 7: kz versus k1 plot for dielectric slab waveguide (Courtesy of J.A. Kong).

2.2 TM Case

For the TM case, a similar guidance condition analogous to (2.1) can be de-
rived but with the understanding that the reflection coefficients in (2.1) are now
TM reflection coefficients. Similar derivations show that the above guidance
condition, for ε2 = ε0, µ2 = µ0, reduces to

ε0
ε1
β1x

d

2
tanβ1x

d

2
=

√
ω2(µ1ε1 − µ0ε0)

d2

4
−
(
β1x

d

2

)2

, even modes

(2.23)

−ε0
ε1
β1x

d

2
cotβ1x

d

2
=

√
ω2(µ1ε1 − µ0ε0)

d2

4
−
(
β1x

d

2

)2

, odd modes

(2.24)

Note that for equation (2.1), when we have two parallel metallic plates, RTM =
1, and RTE = −1, and the guidance condition becomes

1 = e−2jβ1xd ⇒ β1x =
mπ

d
, m = 0, 1, 2, . . . , (2.25)
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